Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Machine Learning for Algorithmic Trading, 2nd Edition [Repost]

    Posted By: IrGens
    Machine Learning for Algorithmic Trading, 2nd Edition [Repost]

    Machine Learning for Algorithmic Trading: Predictive models to extract signals from market and alternative data for systematic trading strategies with Python, 2nd Edition by Stefan Jansen
    English | July 31, 2020 | ISBN: 1839217715 | EPUB | 820 pages | 27.1 MB

    Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio.

    Key Features

    Design, train, and evaluate machine learning algorithms that underpin automated trading strategies
    Create a research and strategy development process to apply predictive modeling to trading decisions
    Leverage NLP and deep learning to extract tradeable signals from market and alternative data

    Book Description

    The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models.

    This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research.

    This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples.

    By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.

    What you will learn

    Leverage market, fundamental, and alternative text and image data
    Research and evaluate alpha factors using statistics, Alphalens, and SHAP values
    Implement machine learning techniques to solve investment and trading problems
    Backtest and evaluate trading strategies based on machine learning using Zipline and Backtrader
    Optimize portfolio risk and performance analysis using pandas, NumPy, and pyfolio
    Create a pairs trading strategy based on cointegration for US equities and ETFs
    Train a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes data

    Who this book is for

    If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies.

    Some understanding of Python and machine learning techniques is required.