Tags
Language
Tags
February 2025
Su Mo Tu We Th Fr Sa
26 27 28 29 30 31 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 1
Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
SpicyMags.xyz

Supervised Machine Learning with Python: Develop rich Python coding practices while exploring supervised machine learning

Posted By: IrGens
Supervised Machine Learning with Python: Develop rich Python coding practices while exploring supervised machine learning

Supervised Machine Learning with Python: Develop rich Python coding practices while exploring supervised machine learning by Taylor Smith
English | May 27, 2019 | ISBN: 1838825665 | PDF | 162 pages | 8.9 MB

Teach your machine to think for itself!

Key Features

Delve into supervised learning and grasp how a machine learns from data
Implement popular machine learning algorithms from scratch, developing a deep understanding along the way
Explore some of the most popular scientific and mathematical libraries in the Python language

Book Description

Supervised machine learning is used in a wide range of sectors (such as finance, online advertising, and analytics) because it allows you to train your system to make pricing predictions, campaign adjustments, customer recommendations, and much more while the system self-adjusts and makes decisions on its own. As a result, it's crucial to know how a machine “learns” under the hood.

This book will guide you through the implementation and nuances of many popular supervised machine learning algorithms while facilitating a deep understanding along the way. You'll embark on this journey with a quick overview and see how supervised machine learning differs from unsupervised learning. Next, we explore parametric models such as linear and logistic regression, non-parametric methods such as decision trees, and various clustering techniques to facilitate decision-making and predictions. As we proceed, you'll work hands-on with recommender systems, which are widely used by online companies to increase user interaction and enrich shopping potential. Finally, you'll wrap up with a brief foray into neural networks and transfer learning.

By the end of this book, you'll be equipped with hands-on techniques and will have gained the practical know-how you need to quickly and powerfully apply algorithms to new problems.

What you will learn

Crack how a machine learns a concept and generalize its understanding to new data
Uncover the fundamental differences between parametric and non-parametric models
Implement and grok several well-known supervised learning algorithms from scratch
Work with models in domains such as ecommerce and marketing
Expand your expertise and use various algorithms such as regression, decision trees, and clustering
Build your own models capable of making predictions
Delve into the most popular approaches in deep learning such as transfer learning and neural networks

Who this book is for

This book is for aspiring machine learning developers who want to get started with supervised learning. Intermediate knowledge of Python programming―and some fundamental knowledge of supervised learning―are expected.