Tags
Language
Tags
August 2025
Su Mo Tu We Th Fr Sa
27 28 29 30 31 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Python Deep Learning, 3rd Edition

    Posted By: ELK1nG
    Python Deep Learning, 3rd Edition


    Python Deep Learning: Understand how deep neural networks work and apply them to real-world tasks, 3rd Edition
    English | 2023 | ISBN: 1837638500 | 488 pages | True EPUB | 17.61 MB


    Master effective navigation of neural networks, including convolutions and transformers, to tackle computer vision and NLP tasks using Python
    Key Features

    Understand the theory, mathematical foundations and the structure of deep neural networks
    Become familiar with transformers, large language models, and convolutional networks
    Learn how to apply them on various computer vision and natural language processing problems Purchase of the print or Kindle book includes a free PDF eBook

    Book Description

    The field of deep learning has developed rapidly in the past years and today covers broad range of applications. This makes it challenging to navigate and hard to understand without solid foundations. This book will guide you from the basics of neural networks to the state-of-the-art large language models in use today.

    The first part of the book introduces the main machine learning concepts and paradigms. It covers the mathematical foundations, the structure, and the training algorithms of neural networks and dives into the essence of deep learning.

    The second part of the book introduces convolutional networks for computer vision. We’ll learn how to solve image classification, object detection, instance segmentation, and image generation tasks.

    The third part focuses on the attention mechanism and transformers – the core network architecture of large language models. We’ll discuss new types of advanced tasks, they can solve, such as chat bots and text-to-image generation.

    By the end of this book, you’ll have a thorough understanding of the inner workings of deep neural networks. You'll have the ability to develop new models or adapt existing ones to solve your tasks. You’ll also have sufficient understanding to continue your research and stay up to date with the latest advancements in the field.
    What you will learn

    Establish theoretical foundations of deep neural networks
    Understand convolutional networks and apply them in computer vision applications
    Become well versed with natural language processing and recurrent networks
    Explore the attention mechanism and transformers
    Apply transformers and large language models for natural language and computer vision
    Implement coding examples with PyTorch, Keras, and Hugging Face Transformers
    Use MLOps to develop and deploy neural network models

    Who this book is for

    This book is for software developers/engineers, students, data scientists, data analysts, machine learning engineers, statisticians, and anyone interested in deep learning. Prior experience with Python programming is a prerequisite.