Tags
Language
Tags
May 2025
Su Mo Tu We Th Fr Sa
27 28 29 30 1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    MLOps with Red Hat OpenShift: A cloud-native approach to machine learning operations

    Posted By: yoyoloit
    MLOps with Red Hat OpenShift: A cloud-native approach to machine learning operations

    MLOps with Red Hat OpenShift
    by Ross Brigoli
    , Faisal Masood

    English | 2024 | ISBN: 1805120239 | 238 pages | True/Retail PDF EPUB | 26.43 MB




    Build and manage MLOps pipelines with this practical guide to using Red Hat OpenShift Data Science, unleashing the power of machine learning workflows
    Key Features

    Grasp MLOps and machine learning project lifecycle through concept introductions
    Get hands on with provisioning and configuring Red Hat OpenShift Data Science
    Explore model training, deployment, and MLOps pipeline building with step-by-step instructions
    Purchase of the print or Kindle book includes a free PDF eBook

    Book Description

    MLOps with OpenShift offers practical insights for implementing MLOps workflows on the dynamic OpenShift platform. As organizations worldwide seek to harness the power of machine learning operations, this book lays the foundation for your MLOps success. Starting with an exploration of key MLOps concepts, including data preparation, model training, and deployment, you'll prepare to unleash OpenShift capabilities, kicking off with a primer on containers, pods, operators, and more.

    With the groundwork in place, you'll be guided to MLOps workflows, uncovering the applications of popular machine learning frameworks for training and testing models on the platform.

    As you advance through the chapters, you'll focus on the open-source data science and machine learning platform, Red Hat OpenShift Data Science, and its partner components, such as Pachyderm and Intel OpenVino, to understand their role in building and managing data pipelines, as well as deploying and monitoring machine learning models.

    Armed with this comprehensive knowledge, you'll be able to implement MLOps workflows on the OpenShift platform proficiently.
    What you will learn

    Build a solid foundation in key MLOps concepts and best practices
    Explore MLOps workflows, covering model development and training
    Implement complete MLOps workflows on the Red Hat OpenShift platform
    Build MLOps pipelines for automating model training and deployments
    Discover model serving approaches using Seldon and Intel OpenVino
    Get to grips with operating data science and machine learning workloads in OpenShift

    Who this book is for

    This book is for MLOps and DevOps engineers, data architects, and data scientists interested in learning the OpenShift platform. Particularly, developers who want to learn MLOps and its components will find this book useful. Whether you're a machine learning engineer or software developer, this book serves as an essential guide to building scalable and efficient machine learning workflows on the OpenShift platform.
    Table of Contents

    Introduction to MLOps and OpenShift
    Provisioning an MLOps platform in the Cloud
    Building Machine Learning Models
    Embedding ML Models into the Applications
    Deploying ML Models as a Service
    Operating ML workloads
    Building a face detector using the Red Hat ML Platform



    For more quality books vist My Blog.