Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Mastering Python for Finance: Implement advanced state-of-the-art financial statistical applications using Python, 2nd E

    Posted By: roxul
    Mastering Python for Finance: Implement advanced state-of-the-art financial statistical applications using Python, 2nd E

    James Ma Weiming, "Mastering Python for Finance: Implement advanced state-of-the-art financial statistical applications using Python, 2nd E"
    English | ISBN: 1789346460 | 2019 | 426 pages | EPUB | 14 MB

    Take your financial skills to the next level by mastering cutting-edge mathematical and statistical financial applications
    Key Features
    Explore advanced financial models used by the industry and ways of solving them using Python
    Build state-of-the-art infrastructure for modeling, visualization, trading, and more
    Empower your financial applications by applying machine learning and deep learning
    Book Description
    The second edition of Mastering Python for Finance will guide you through carrying out complex financial calculations practiced in the industry of finance by using next-generation methodologies. You will master the Python ecosystem by leveraging publicly available tools to successfully perform research studies and modeling, and learn to manage risks with the help of advanced examples.
    You will start by setting up your Jupyter notebook to implement the tasks throughout the book. You will learn to make efficient and powerful data-driven financial decisions using popular libraries such as TensorFlow, Keras, Numpy, SciPy, and sklearn. You will also learn how to build financial applications by mastering concepts such as stocks, options, interest rates and their derivatives, and risk analytics using computational methods. With these foundations, you will learn to apply statistical analysis to time series data, and understand how time series data is useful for implementing an event-driven backtesting system and for working with high-frequency data in building an algorithmic trading platform. Finally, you will explore machine learning and deep learning techniques that are applied in finance.
    By the end of this book, you will be able to apply Python to different paradigms in the financial industry and perform efficient data analysis.
    What you will learn
    Solve linear and nonlinear models representing various financial problems
    Perform principal component analysis on the DOW index and its components
    Analyze, predict, and forecast stationary and non-stationary time series processes
    Create an event-driven backtesting tool and measure your strategies
    Build a high-frequency algorithmic trading platform with Python
    Replicate the CBOT VIX index with SPX options for studying VIX-based strategies
    Perform regression-based and classification-based machine learning tasks for prediction
    Use TensorFlow and Keras in deep learning neural network architecture
    Who this book is for
    If you are a financial or data analyst or a software developer in the financial industry who is interested in using advanced Python techniques for quantitative methods in finance, this is the book you need! You will also find this book useful if you want to extend the functionalities of your existing financial applications by using smart machine learning techniques. Prior experience in Python is required.
    Table of Contents
    Overview of Financial Analysis with Python
    The Importance of Linearity in Finance
    Nonlinearity in Finance
    Numerical Methods for Pricing Options
    Modeling Interest Rates and Derivates
    Statistical Analysis of Time Series Data
    Interactive Financial Analytics with VIX
    Building an Algorithmic Trading Platform
    Implementing a Backtesting System
    Machine Learning for Finance
    Deep Learning for Finance