Tags
Language
Tags
June 2025
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    SQL Server 2017 Developer's Guide

    Posted By: ksveta6
    SQL Server 2017 Developer's Guide

    SQL Server 2017 Developer's Guide: A professional guide to designing and developing enterprise database applications by Dejan Sarka, Miloš Radivojević, William Durkin
    2018 | ISBN: 1788476190 | English | 826 pages | PDF | 44 MB

    Build smarter and efficient database application systems for your organization with SQL Server 2017

    Key Features
    Build database applications by using the development features of SQL Server 2017
    Work with temporal tables to get information stored in a table at any time
    Use adaptive querying to enhance the performance of your queries
    Book Description
    Microsoft SQL Server 2017 is the next big step in the data platform history of Microsoft as it brings in the power of R and Python for machine learning and containerization-based deployment on Windows and Linux. Compared to its predecessor, SQL Server 2017 has evolved into Machine Learning with R services for statistical analysis and Python packages for analytical processing. This book prepares you for more advanced topics by starting with a quick introduction to SQL Server 2017's new features and a recapitulation of the possibilities you may have already explored with previous versions of SQL Server. The next part introduces you to enhancements in the Transact-SQL language and new database engine capabilities and then switches to a completely new technology inside SQL Server: JSON support. We also take a look at the Stretch database, security enhancements, and temporal tables.

    Furthermore, the book focuses on implementing advanced topics, including Query Store, columnstore indexes, and In-Memory OLTP. Towards the end of the book, you'll be introduced to R and how to use the R language with Transact-SQL for data exploration and analysis. You'll also learn to integrate Python code in SQL Server and graph database implementations along with deployment options on Linux and SQL Server in containers for development and testing.

    By the end of this book, you will have the required information to design efficient, high-performance database applications without any hassle.

    What you will learn
    Explore the new development features introduced in SQL Server 2017
    Identify opportunities for In-Memory OLTP technology
    Use columnstore indexes to get storage and performance improvements
    Exchange JSON data between applications and SQL Server
    Use the new security features to encrypt or mask the data
    Control the access to the data on the row levels
    Discover the potential of R and Python integration
    Model complex relationships with the graph databases in SQL Server 2017
    Who This Book Is For
    Database developers and solution architects looking to design efficient database applications using SQL Server 2017 will find this book very useful. In addition, this book will be valuable to advanced analysis practitioners and business intelligence developers. Database consultants dealing with performance tuning will get a lot of useful information from this book as well.

    Some basic understanding of database concepts and T-SQL is required to get the best out of this book.

    Table of Contents
    Introduction to SQL Server 2017
    Review of SQL Server Features for Developers
    SQL Server Tools
    Transact-SQL and Database Engine Enhancements
    JSON Support in SQL Server
    Stretch Database
    Temporal Tables
    Tightening the Security
    Query Store
    Columnstore Indexes
    Introducing SQL Server In-Memory OLTP
    In-Memory OLTP Improvements in SQL Server 2017
    Supporting R in SQL Server
    Data Exploration and Predictive Modeling with R in SQL Server
    Introducing Python for SQl Server
    Graph Databases
    SQL Server on Linux / In Containers