Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    IPython Interactive Computing and Visualization Cookbook - Second Edition

    Posted By: Grev27
    IPython Interactive Computing and Visualization Cookbook - Second Edition

    Cyrille Rossant, "IPython Interactive Computing and Visualization Cookbook - Second Edition"
    English | ISBN: 1785888633 | 2018 | EPUB | 548 pages | 39 MB

    Learn to use IPython and Jupyter Notebook for your data analysis and visualization work.

    Key Features
    Leverage the Jupyter Notebook for interactive data science and visualization
    Become an expert in high-performance computing and visualization for data analysis and scientific modeling
    A comprehensive coverage of scientific computing through many hands-on, example-driven recipes with detailed, step-by-step explanations

    Book Description
    Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform.

    IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning.

    The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics.

    What you will learn
    Master all features of the Jupyter Notebook
    Code better: write high-quality, readable, and well-tested programs; profile and optimize your code; and conduct reproducible interactive computing experiments
    Visualize data and create interactive plots in the Jupyter Notebook
    Write blazingly fast Python programs with NumPy, ctypes, Numba, Cython, OpenMP, GPU programming (CUDA), parallel IPython, Dask, and more
    Analyze data with Bayesian or frequentist statistics (Pandas, PyMC, and R), and learn from actual data through machine learning (scikit-learn)
    Gain valuable insights into signals, images, and sounds with SciPy, scikit-image, and OpenCV
    Simulate deterministic and stochastic dynamical systems in Python
    Familiarize yourself with math in Python using SymPy and Sage: algebra, analysis, logic, graphs, geometry, and probability theory

    Who This Book Is For
    This book is intended for anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, and hobbyists. A basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.

    Table of Contents
    A Tour of Interactive Computing with Jupyter and IPython
    Best Practices in Interactive Computing
    Mastering the Jupyter Notebook
    Profiling and Optimization
    High-Performance Computing
    Data Visualization
    Statistical Data Analysis
    Machine Learning
    Numerical Optimization
    Signal Processing
    Image and Audio Processing
    Deterministic Dynamical Systems
    Stochastic Dynamical Systems
    Graphs, Geometry, and Geographic Information Systems
    Symbolic and Numerical Mathematics