Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    https://sophisticatedspectra.com/article/drosia-serenity-a-modern-oasis-in-the-heart-of-larnaca.2521391.html

    DROSIA SERENITY
    A Premium Residential Project in the Heart of Drosia, Larnaca

    ONLY TWO FLATS REMAIN!

    Modern and impressive architectural design with high-quality finishes Spacious 2-bedroom apartments with two verandas and smart layouts Penthouse units with private rooftop gardens of up to 63 m² Private covered parking for each apartment Exceptionally quiet location just 5–8 minutes from the marina, Finikoudes Beach, Metropolis Mall, and city center Quick access to all major routes and the highway Boutique-style building with only 8 apartments High-spec technical features including A/C provisions, solar water heater, and photovoltaic system setup.
    Drosia Serenity is not only an architectural gem but also a highly attractive investment opportunity. Located in the desirable residential area of Drosia, Larnaca, this modern development offers 5–7% annual rental yield, making it an ideal choice for investors seeking stable and lucrative returns in Cyprus' dynamic real estate market. Feel free to check the location on Google Maps.
    Whether for living or investment, this is a rare opportunity in a strategic and desirable location.

    Approximation Methods for Efficient Learning of Bayesian Networks (repost)

    Posted By: libr
    Approximation Methods for Efficient Learning of Bayesian Networks (repost)

    Carsten Riggelsen - Approximation Methods for Efficient Learning of Bayesian Networks
    English | 2008-01-15 | ISBN: 1586038214 | PDF | 148 pages | 1.27 MB

    This publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations are implemented, such that learning remains feasible, albeit non-Bayesian. Topics discussed are; basic concepts about probabilities, graph theory and conditional independence; Bayesian network learning from data; Monte Carlo simulation techniques; and the concept of incomplete data.

    In order to provide a coherent treatment of matters, thereby helping the reader to gain a thorough understanding of the whole concept of learning Bayesian networks from (in)complete data, this publication combines in a clarifying way all the issues presented in the papers with previously unpublished work.

    IOS Press is an international science, technical and medical publisher of high-quality books for academics, scientists, and professionals in all fields.
    Some of the areas we publish in:
    -Biomedicine
    -Oncology
    -Artificial intelligence
    -Databases and information systems
    -Maritime engineering
    -Nanotechnology
    -Geoengineering
    -All aspects of physics
    -E-governance
    -E-commerce
    -The knowledge economy
    -Urban studies
    -Arms control
    -Understanding and responding to terrorism
    -Medical informatics
    -Computer Sciences
    To start download click HERE: