Tags
Language
Tags
October 2025
Su Mo Tu We Th Fr Sa
28 29 30 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Nonlinear Functional Analysis in Banach Spaces and Banach Algebras

    Posted By: arundhati
    Nonlinear Functional Analysis in Banach Spaces and Banach Algebras

    Aref Jeribi, Bilel Krichen, "Nonlinear Functional Analysis in Banach Spaces and Banach Algebras"
    2015 | ISBN-10: 1498733883 | 371 pages | PDF | 9 MB

    Uncover the Useful Interactions of Fixed Point Theory with Topological Structures

    Nonlinear Functional Analysis in Banach Spaces and Banach Algebras: Fixed Point Theory under Weak Topology for Nonlinear Operators and Block Operator Matrices with Applications is the first book to tackle the topological fixed point theory for block operator matrices with nonlinear entries in Banach spaces and Banach algebras. The book provides researchers and graduate students with a unified survey of the fundamental principles of fixed point theory in Banach spaces and algebras.


    The authors present several extensions of Schauder’s and Krasnosel’skii’s fixed point theorems to the class of weakly compact operators acting on Banach spaces and algebras, particularly on spaces satisfying the Dunford–Pettis property. They also address under which conditions a 2×2 block operator matrix with single- and multi-valued nonlinear entries will have a fixed point.


    In addition, the book describes applications of fixed point theory to a wide range of diverse equations, including transport equations arising in the kinetic theory of gas, stationary nonlinear biological models, two-dimensional boundary-value problems arising in growing cell populations, and functional systems of integral equations. The book focuses on fixed point results under the weak topology since these problems involve the loss of compactness of mappings and/or the missing geometric and topological structure of their underlying domain.