Tags
Language
Tags
June 2025
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Deep Belief Nets in C++ and CUDA C: Volume 2: Autoencoding in the Complex Domain

    Posted By: AvaxGenius
    Deep Belief Nets in C++ and CUDA C: Volume 2: Autoencoding in the Complex Domain

    Deep Belief Nets in C++ and CUDA C: Volume 2: Autoencoding in the Complex Domain by Timothy Masters
    English | PDF,EPUB | 2018 | 265 Pages | ISBN : 1484236459 | 10.97 MB

    Discover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. You’ll take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. Deep Belief Nets in C++ and CUDA C: Volume 2 also covers several algorithms for preprocessing time series and image data. These algorithms focus on the creation of complex-domain predictors that are suitable for input to a complex-domain autoencoder. Finally, you’ll learn a method for embedding class information in the input layer of a restricted Boltzmann machine. This facilitates generative display of samples from individual classes rather than the entire data distribution. The ability to see the features that the model has learned for each class separately can be invaluable.
    At each step this book provides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards.

    What You'll Learn

    Code for deep learning, neural networks, and AI using C++ and CUDA C
    Carry out signal preprocessing using simple transformations, Fourier transforms, Morlet wavelets, and more
    Use the Fourier Transform for image preprocessing
    Implement autoencoding via activation in the complex domain
    Work with algorithms for CUDA gradient computation
    Use the DEEP operating manual

    Who This Book Is For
    Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.