Tags
Language
Tags
October 2025
Su Mo Tu We Th Fr Sa
28 29 30 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Veracity of Big Data: Machine Learning and Other Approaches to Verifying Truthfulness

    Posted By: AvaxGenius
    Veracity of Big Data: Machine Learning and Other Approaches to Verifying Truthfulness

    Veracity of Big Data: Machine Learning and Other Approaches to Verifying Truthfulness by Vishnu Pendyala
    English | PDF,EPUB | 2018 | 187 Pages | ISBN : 1484236327 | 7.04 MB

    Examine the problem of maintaining the quality of big data and discover novel solutions. You will learn the four V’s of big data, including veracity, and study the problem from various angles. The solutions discussed are drawn from diverse areas of engineering and math, including machine learning, statistics, formal methods, and the Blockchain technology.
    Veracity of Big Data serves as an introduction to machine learning algorithms and diverse techniques such as the Kalman filter, SPRT, CUSUM, fuzzy logic, and Blockchain, showing how they can be used to solve problems in the veracity domain. Using examples, the math behind the techniques is explained in easy-to-understand language.
    Determining the truth of big data in real-world applications involves using various tools to analyze the available information. This book delves into some of the techniques that can be used. Microblogging websites such as Twitter have played a major role in public life, including during presidential elections. The book uses examples of microblogs posted on a particular topic to demonstrate how veracity can be examined and established. Some of the techniques are described in the context of detecting veiled attacks on microblogging websites to influence public opinion.
    What You'll Learn

    Understand the problem concerning data veracity and its ramifications
    Develop the mathematical foundation needed to help minimize the impact of the problem using easy-to-understand language and examples
    Use diverse tools and techniques such as machine learning algorithms, Blockchain, and the Kalman filter to address veracity issues
    Who This Book Is For

    Software developers and practitioners, practicing engineers, curious managers, graduate students, and research scholars