Tags
Language
Tags
December 2024
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 1 2 3 4

Docker for Data Science: Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server

Posted By: hill0
Docker for Data Science: Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server

Docker for Data Science: Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server by Joshua Cook
English | 25 Aug. 2017 | ISBN: 1484230116 | 284 Pages | EPUB | 2.28 MB

Learn Docker "infrastructure as code" technology to define a system for performing standard but non-trivial data tasks on medium- to large-scale data sets, using Jupyter as the master controller.
It is not uncommon for a real-world data set to fail to be easily managed. The set may not fit well into access memory or may require prohibitively long processing. These are significant challenges to skilled software engineers and they can render the standard Jupyter system unusable.
As a solution to this problem, Docker for Data Science proposes using Docker. You will learn how to use existing pre-compiled public images created by the major open-source technologies―Python, Jupyter, Postgres―as well as using the Dockerfile to extend these images to suit your specific purposes. The Docker-Compose technology is examined and you will learn how it can be used to build a linked system with Python churning data behind the scenes and Jupyter managing these background tasks. Best practices in using existing images are explored as well as developing your own images to deploy state-of-the-art machine learning and optimization algorithms.

What You'll Learn
Master interactive development using the Jupyter platform
Run and build Docker containers from scratch and from publicly available open-source images
Write infrastructure as code using the docker-compose tool and its docker-compose.yml file type
Deploy a multi-service data science application across a cloud-based system

Who This Book Is For

Data scientists, machine learning engineers, artificial intelligence researchers, Kagglers, and software developers