Tags
Language
Tags
October 2025
Su Mo Tu We Th Fr Sa
28 29 30 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Introduction to Statistical Data Analysis for the Life Sciences, Second Edition (repost)

    Posted By: interes
    Introduction to Statistical Data Analysis for the Life Sciences, Second Edition (repost)

    Introduction to Statistical Data Analysis for the Life Sciences, Second Edition by Claus Thorn Ekstrom and Helle Sørensen
    English | 2014 | ISBN: 1482238934 | 526 pages | PDF | 3,3 MB

    A Hands-On Approach to Teaching Introductory Statistics
    Expanded with over 100 more pages, Introduction to Statistical Data Analysis for the Life Sciences, Second Edition presents the right balance of data examples, statistical theory, and computing to teach introductory statistics to students in the life sciences. This popular textbook covers the mathematics underlying classical statistical analysis, the modeling aspects of statistical analysis and the biological interpretation of results, and the application of statistical software in analyzing real-world problems and datasets.
    New to the Second Edition
    • A new chapter on non-linear regression models
    • A new chapter that contains examples of complete data analyses, illustrating how a full-fledged statistical analysis is undertaken
    • Additional exercises in most chapters
    • A summary of statistical formulas related to the specific designs used to teach the statistical concepts
    This text provides a computational toolbox that enables students to analyze real datasets and gain the confidence and skills to undertake more sophisticated analyses. Although accessible with any statistical software, the text encourages a reliance on R. For those new to R, an introduction to the software is available in an appendix. The book also includes end-of-chapter exercises as well as an entire chapter of case exercises that help students apply their knowledge to larger datasets and learn more about approaches specific to the life sciences.