Tags
Language
Tags
November 2025
Su Mo Tu We Th Fr Sa
26 27 28 29 30 31 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 1 2 3 4 5 6
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    A Study in Derived Algebraic Geometry, Volume I: Correspondences and Duality

    Posted By: ksveta6
    A Study in Derived Algebraic Geometry, Volume I: Correspondences and Duality

    1: A Study in Derived Algebraic Geometry: Correspondences and Duality (Mathematical Surveys and Monographs) by Dennis Gaitsgory,‎ Nick Rozenblyum
    2017 | ISBN: 1470435691 | English | 577 pages | PDF | 6 MB

    Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in various parts of mathematics, most prominently in representation theory. This volume develops the theory of ind-coherent sheaves in the context of derived algebraic geometry. Ind-coherent sheaves are a ``renormalization'' of quasi-coherent sheaves and provide a natural setting for Grothendieck-Serre duality as well as geometric incarnations of numerous categories of interest in representation theory.This volume consists of three parts and an appendix. The first part is a survey of homotopical algebra in the setting of $\infty$-categories and the basics of derived algebraic geometry. The second part builds the theory of ind-coherent sheaves as a functor out of the category of correspondences and studies the relationship between ind-coherent and quasi-coherent sheaves. The third part sets up the general machinery of the $\mathrm{(}\infty, 2\mathrm{)}$-category of correspondences needed for the second part. The category of correspondences, via the theory developed in the third part, provides a general framework for Grothendieck's six-functor formalism. The appendix provides the necessary background on $\mathrm{(}\infty, 2\mathrm{)}$-categories needed for the third part.