Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Deformation Quantization for Actions of Kahlerian Lie Groups

    Posted By: nebulae
    Deformation Quantization for Actions of Kahlerian Lie Groups

    Pierre Bieliavsky, Victor Gayral, "Deformation Quantization for Actions of Kahlerian Lie Groups"
    English | ISBN: 1470414910 | 2015 | 166 pages | PDF | 1 MB

    Let $\mathbb{B}$ be a Lie group admitting a left-invariant negatively curved Kahlerian structure. Consider a strongly continuous action $\alpha$ of $\mathbb{B}$ on a Frechet algebra $\mathcal{A}$. Denote by $\mathcal{A}^\infty$ the associated Frechet algebra of smooth vectors for this action. In the Abelian case $\mathbb{B}=\mathbb{R}^{2n}$ and $\alpha$ isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Frechet algebra structures $\{\star_{\theta}^\alpha\}_{\theta\in\mathbb{R}}$ on $\mathcal{A}^\infty$. When $\mathcal{A}$ is a $C^*$-algebra, every deformed Frechet algebra $(\mathcal{A}^\infty,\star^\alpha_\theta)$ admits a compatible pre-$C^*$-structure, hence yielding a deformation theory at the level of $C^*$-algebras too.

    In this memoir, the authors prove both analogous statements for general negatively curved Kahlerian groups. The construction relies on the one hand on combining a non-Abelian version of oscillatory integral on tempered Lie groups with geom,etrical objects coming from invariant WKB-quantization of solvable symplectic symmetric spaces, and, on the second hand, in establishing a non-Abelian version of the Calderon-Vaillancourt Theorem. In particular, the authors give an oscillating kernel formula for WKB-star products on symplectic symmetric spaces that fiber over an exponential Lie group.