Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Higher-Order Time Asymptotics of Fast Diffusion in Euclidean Space: A Dynamical Systems Methods

    Posted By: DZ123
    Higher-Order Time Asymptotics of Fast Diffusion in Euclidean Space: A Dynamical Systems Methods

    Jochen Denzler, Herbert Koch, Robert J. Mccann, "Higher-Order Time Asymptotics of Fast Diffusion in Euclidean Space: A Dynamical Systems Methods"
    English | 2015 | ISBN: 1470414082 | PDF | pages: 94 | 0.7 mb

    This paper quantifies the speed of convergence and higher-order asymptotics of fast diffusion dynamics on $mathbfRn$ to the Barenblatt (self similar) solution. Degeneracies in the parabolicity of this equation are cured by re-expressing the dynamics on a manifold with a cylindrical end, called the cigar. The nonlinear evolution becomes differentiable in Holder spaces on the cigar. The linearization of the dynamics is given by the Laplace-Beltrami operator plus a transport term (which can be suppressed by introducing appropriate weights into the function space norm), plus a finite-depth potential well with a universal profile. In the limiting case of the (linear) heat equation, the depth diverges, the number of eigenstates increases without bound, and the continuous spectrum recedes to infinity.The authors provide a detailed study of the linear and nonlinear problems in Holder spaces on the cigar, including a sharp boundedness estimate for the semigroup, and use this as a tool to obtain sharp convergence results toward the Barenblatt solution, and higher order asymptotics. In finer convergence results (after modding out symmetries of the problem), a subtle interplay between convergence rates and tail behavior is revealed. The difficulties involved in choosing the right functional spaces in which to carry out the analysis can be interpreted as genuine features of the equation rather than mere annoying technicalities.