Tags
Language
Tags
August 2025
Su Mo Tu We Th Fr Sa
27 28 29 30 31 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Nonparametric Models for Longitudinal Data: With Implementation in R

    Posted By: arundhati
    Nonparametric Models for Longitudinal Data: With Implementation in R

    Colin O. Wu, Xin Tian, "Nonparametric Models for Longitudinal Data: With Implementation in R"
    2018 | ISBN-10: 1466516003 | 582 pages | PDF | 5 MB

    Nonparametric Models for Longitudinal Data with Implementations in R presents a comprehensive summary of major advances in nonparametric models and smoothing methods with longitudinal data. It covers methods, theories, and applications that are particularly useful for biomedical studies in the era of big data and precision medicine. It also provides flexible tools to describe the temporal trends, covariate effects and correlation structures of repeated measurements in longitudinal data.

    This book is intended for graduate students in statistics, data scientists and statisticians in biomedical sciences and public health. As experts in this area, the authors present extensive materials that are balanced between theoretical and practical topics. The statistical applications in real-life examples lead into meaningful interpretations and inferences.

    Features:

    Provides an overview of parametric and semiparametric methods
    Shows smoothing methods for unstructured nonparametric models
    Covers structured nonparametric models with time-varying coefficients
    Discusses nonparametric shared-parameter and mixed-effects models
    Presents nonparametric models for conditional distributions and functionals
    Illustrates implementations using R software packages
    Includes datasets and code in the authors’ website
    Contains asymptotic results and theoretical derivations
    Both authors are mathematical statisticians at the National Institutes of Health (NIH) and have published extensively in statistical and biomedical journals. Colin O. Wu earned his Ph.D. in statistics from the University of California, Berkeley (1990), and is also Adjunct Professor at the Georgetown University School of Medicine. He served as Associate Editor for Biometrics and Statistics in Medicine, and reviewer for National Science Foundation, NIH, and the U.S. Department of Veterans Affairs. Xin Tian earned her Ph.D. in statistics from Rutgers, the State University of New Jersey (2003). She has served on various NIH committees and collaborated extensively with clinical researchers.