Tags
Language
Tags
June 2025
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Uncertain Dynamical Systems: Stability and Motion Control

    Posted By: arundhati
    Uncertain Dynamical Systems: Stability and Motion Control

    A.A. Martynyuk, Yu. A. Martynyuk-Chernienko, "Uncertain Dynamical Systems: Stability and Motion Control"
    2012 | ISBN-10: 1439876851 | 310 pages | PDF | 3,7 MB

    This self-contained book provides systematic instructive analysis of uncertain systems of the following types: ordinary differential equations, impulsive equations, equations on time scales, singularly perturbed differential equations, and set differential equations. Each chapter contains new conditions of stability of unperturbed motion of the above-mentioned type of equations, along with some applications. Without assuming specific knowledge of uncertain dynamical systems, the book includes many fundamental facts about dynamical behaviour of its solutions. Giving a concise review of current research developments, Uncertain Dynamical Systems: Stability and Motion Control

    Details all proofs of stability conditions for five classes of uncertain systems
    Clearly defines all used notions of stability and control theory
    Contains an extensive bibliography, facilitating quick access to specific subject areas in each chapter

    Requiring only a fundamental knowledge of general theory of differential equations and calculus, this book serves as an excellent text for pure and applied mathematicians, applied physicists, industrial engineers, operations researchers, and upper-level undergraduate and graduate students studying ordinary differential equations, impulse equations, dynamic equations on time scales, and set differential equations.