Tags
Language
Tags
September 2025
Su Mo Tu We Th Fr Sa
31 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 1 2 3 4
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Volterra Integral Equations: An Introduction to Theory and Applications

    Posted By: Underaglassmoon
    Volterra Integral Equations: An Introduction to Theory and Applications

    Volterra Integral Equations: An Introduction to Theory and Applications
    Cambridge | English | 2017 | ISBN-10: 1107098726 | 410 pages | PDF | 4.02 mb

    by Hermann Brunner (Author)

    This book offers a comprehensive introduction to the theory of linear and nonlinear Volterra integral equations (VIEs), ranging from Volterra's fundamental contributions and the resulting classical theory to more recent developments that include Volterra functional integral equations with various kinds of delays, VIEs with highly oscillatory kernels, and VIEs with non-compact operators. It will act as a 'stepping stone' to the literature on the advanced theory of VIEs, bringing the reader to the current state of the art in the theory. Each chapter contains a large number of exercises, extending from routine problems illustrating or complementing the theory to challenging open research problems. The increasingly important role of VIEs in the mathematical modelling of phenomena where memory effects play a key role is illustrated with some 30 concrete examples, and the notes at the end of each chapter feature complementary references as a guide to further reading

    Book Description
    This book offers a comprehensive introduction to the theory of linear and nonlinear Volterra integral equations (VIEs), from Volterra's fundamental contributions and resulting classical theory to more recent developments. It includes Volterra functional integral equations with various kinds of delays, VIEs with highly oscillatory kernels, and VIEs with non-compact operators.

    About the Author
    Hermann Brunner is a Research Professor of Mathematics at the Hong Kong Baptist University, and in 2006 he won the David Borwein Distinguished Career Award of the Canadian Mathematical Society. His previous books include Collocation Methods for Volterra Integral and Related Functional Differential Equations (Cambridge, 2004) and The Numerical Solution of Volterra Equations (1986).