Tags
Language
Tags
August 2025
Su Mo Tu We Th Fr Sa
27 28 29 30 31 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    KoalaNames.com
    What’s in a name? More than you think.

    Your name isn’t just a label – it’s a vibe, a map, a story written in stars and numbers.
    At KoalaNames.com, we’ve cracked the code behind 17,000+ names to uncover the magic hiding in yours.

    ✨ Want to know what your name really says about you? You’ll get:

    🔮 Deep meaning and cultural roots
    ♈️ Zodiac-powered personality insights
    🔢 Your life path number (and what it means for your future)
    🌈 Daily affirmations based on your name’s unique energy

    Or flip the script – create a name from scratch using our wild Name Generator.
    Filter by star sign, numerology, origin, elements, and more. Go as woo-woo or chill as you like.

    💥 Ready to unlock your name’s power?

    👉 Tap in now at KoalaNames.com

    Geometric Method for Stability of Non-Linear Elastic Thin Shells

    Posted By: AvaxGenius
    Geometric Method for Stability of Non-Linear Elastic Thin Shells

    Geometric Method for Stability of Non-Linear Elastic Thin Shells by Jordanka Ivanova , Franco Pastrone
    English | PDF | 2002 | 252 Pages | ISBN : 0792375246 | 28.8 MB

    PREFACE This book deals with the new developments and applications of the geometric method to the nonlinear stability problem for thin non-elastic shells. There are no other published books on this subject except the basic ones of A. V. Pogorelov (1966,1967,1986), where variational principles defined over isometric surfaces, are postulated, and applied mainly to static and dynamic problems of elastic isotropic thin shells. A. V. Pogorelov (Harkov, Ukraine) was the first to provide in his monographs the geometric construction of the deformed shell surface in a post-critical stage and deriving explicitely the asymptotic formulas for the upper and lower critical loads. In most cases, these formulas were presented in a closed analytical form, and confirmed by experimental data. The geometric method by Pogorelov is one of the most important analytical methods developed during the last century. Its power consists in its ability to provide a clear geometric picture of the postcritical form of a deformed shell surface, successfully applied to a direct variational approach to the nonlinear shell stability problems. Until now most Pogorelov's monographs were written in Russian, which limited the diffusion of his ideas among the international scientific community. The present book is intended to assist and encourage the researches in this field to apply the geometric method and the related results to everyday engineering practice.
    Thanks For Buying/Renewing Premium From My Blog Links To Support
    Without You And Your Support We Can't Continue