John S. Buckleton, Jo-Anne Bright, Duncan Taylor, "Forensic DNA Evidence Interpretation"
English | 2016 | pages: 500 | ISBN: 0367778106, 1482258897 | PDF | 12,2 mb
English | 2016 | pages: 500 | ISBN: 0367778106, 1482258897 | PDF | 12,2 mb
Now in its second edition, Forensic DNA Evidence Interpretation is the most comprehensive resource for DNA casework available today. Written by leaders in the fields of biology and statistics, including a contribution from Peter Gill, the father of DNA analysis, the book emphasizes the interpretation of test results and provides the necessary formulae in an easily accessible manner. This latest edition is fully updated and includes current and emerging techniques in this fast-moving field.
The book begins by reviewing all pertinent biology, and then provides information on every aspect of DNA analysis. This includes modern interpretation methods and contemporary population genetic models available for estimating DNA frequencies or likelihood ratios. Following a chapter on procedures for validating databases, the text presents overviews and performance assessments of both modern sampling uncertainty methods and current paternity testing techniques, including new guidelines on paternity testing in alignment with the International Society for Forensic Genetics. Later chapters discuss the latest methods for mixture analysis, LCN (ultra trace) analysis and non-autosomal (mito, X, and Y) DNA analysis. The text concludes with an overview of procedures for disaster victim identification and information on DNA intelligence databases.
Highlights of the second edition include:
- New information about PCR processes, heterozygote balance and back and forward stuttering
- New information on the interpretation of low template DNA, drop models and continuous models
- Additional coverage of lineage marker subpopulation effects, mixtures and combinations with autosomal markers
This authoritative book provides a link among the biological, forensic, and interpretative domains of the DNA profiling field. It continues to serve as an invaluable resource that allows forensic scientists, technicians, molecular biologists and attorneys to use forensic DNA evidence to its greatest potential.
My Link