Tags
Language
Tags
October 2025
Su Mo Tu We Th Fr Sa
28 29 30 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Modern Applied Regressions: Bayesian and Frequentist Analysis of Categorical and Limited Response Variables with R and Stan

    Posted By: yoyoloit
    Modern Applied Regressions: Bayesian and Frequentist Analysis of Categorical and Limited Response Variables with R and Stan

    Modern Applied Regressions: Bayesian and Frequentist Analysis of Categorical and Limited Response Variables with R and Stan
    by Jun Xu

    English | 2022 | ISBN: ‎ 0367173875, 978-0367173876 | 298 pages | True PDF | 6.58 MB


    Modern Applied Regressions creates an intricate and colorful mural with mosaics of categorical and limited response variable (CLRV) models using both Bayesian and Frequentist approaches. Written for graduate students, junior researchers, and quantitative analysts in behavioral, health, and social sciences, this text provides details for doing Bayesian and frequentist data analysis of CLRV models. Each chapter can be read and studied separately with R coding snippets and template interpretation for easy replication. Along with the doing part, the text provides basic and accessible statistical theories behind these models and uses a narrative style to recount their origins and evolution.
    This book first scaffolds both Bayesian and frequentist paradigms for regression analysis, and then moves onto different types of categorical and limited response variable models, including binary, ordered, multinomial, count, and survival regression. Each of the middle four chapters discusses a major type of CLRV regression that subsumes an array of important variants and extensions. The discussion of all major types usually begins with the history and evolution of the prototypical model, followed by the formulation of basic statistical properties and an elaboration on the doing part of the model and its extension. The doing part typically includes R codes, results, and their interpretation. The last chapter discusses advanced modeling and predictive techniques―multilevel modeling, causal inference and propensity score analysis, and machine learning―that are largely built with the toolkits designed for the CLRV models previously covered.
    The online resources for this book, including R and Stan codes and supplementary
    notes, can be accessed at https://sites.google.com/site/socjunxu/home/statistics/modernapplied-
    regressions.