Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    https://sophisticatedspectra.com/article/drosia-serenity-a-modern-oasis-in-the-heart-of-larnaca.2521391.html

    DROSIA SERENITY
    A Premium Residential Project in the Heart of Drosia, Larnaca

    ONLY TWO FLATS REMAIN!

    Modern and impressive architectural design with high-quality finishes Spacious 2-bedroom apartments with two verandas and smart layouts Penthouse units with private rooftop gardens of up to 63 m² Private covered parking for each apartment Exceptionally quiet location just 5–8 minutes from the marina, Finikoudes Beach, Metropolis Mall, and city center Quick access to all major routes and the highway Boutique-style building with only 8 apartments High-spec technical features including A/C provisions, solar water heater, and photovoltaic system setup.
    Drosia Serenity is not only an architectural gem but also a highly attractive investment opportunity. Located in the desirable residential area of Drosia, Larnaca, this modern development offers 5–7% annual rental yield, making it an ideal choice for investors seeking stable and lucrative returns in Cyprus' dynamic real estate market. Feel free to check the location on Google Maps.
    Whether for living or investment, this is a rare opportunity in a strategic and desirable location.

    An Introduction to Algebraic Geometry and Algebraic Groups

    Posted By: zxcvbn
    An Introduction to Algebraic Geometry and Algebraic Groups

    An Introduction to Algebraic Geometry and Algebraic Groups by Meinolf Geck
    English | ISBN: 019967616X | 2013 | PDF | 320 pages | 2 MB

    Algebraic geometry, in its classical form, is the study of algebraic sets in affine or projective space. By definition, an algebraic set in kn (where k is a field) is the set of all common zeros of a collection of polynomials in n variables. Algebraic groups are both groups and algebraic sets, where the group operations are given by polynomial functions. For example, the special linear group SLn(k) consisting of all n × n matrices with determinant 1 is an algebraic group.

    Historically, these groups were first studied in an analytic con- text, where the ground field k is R or C. This is the classical theory of ‘Lie groups’ (see Chevalley (1946) or Rossmann (2002), for example), which plays an important role in various branches of mathematics. Through the fundamental work of Borel and Chevalley in the 1950s, it is known that this theory also makes sense over an arbitrary alge- braically closed field. This book contains an introduction to the theory of ‘groups of Lie type’ over such a general ground field k; con- sequently, the main flavour of the exposition is purely algebraic. In the last chapter of this book, we will even exclusively study the case where k is an algebraic closure of a finite field of characteristic p > 0. Then the corresponding algebraic groups give rise to various fami- lies of finite groups. By the classification of the finite simple groups, every non-abelian finite simple group arises from an algebraic group over a field of characteristic p > 0, except for the alternating groups and 26 sporadic simple groups; see Gorenstein et al. (1994). This is one reason why algebraic groups over fields of positive characteristic also play an important role.