Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    https://sophisticatedspectra.com/article/drosia-serenity-a-modern-oasis-in-the-heart-of-larnaca.2521391.html

    DROSIA SERENITY
    A Premium Residential Project in the Heart of Drosia, Larnaca

    ONLY TWO FLATS REMAIN!

    Modern and impressive architectural design with high-quality finishes Spacious 2-bedroom apartments with two verandas and smart layouts Penthouse units with private rooftop gardens of up to 63 m² Private covered parking for each apartment Exceptionally quiet location just 5–8 minutes from the marina, Finikoudes Beach, Metropolis Mall, and city center Quick access to all major routes and the highway Boutique-style building with only 8 apartments High-spec technical features including A/C provisions, solar water heater, and photovoltaic system setup.
    Drosia Serenity is not only an architectural gem but also a highly attractive investment opportunity. Located in the desirable residential area of Drosia, Larnaca, this modern development offers 5–7% annual rental yield, making it an ideal choice for investors seeking stable and lucrative returns in Cyprus' dynamic real estate market. Feel free to check the location on Google Maps.
    Whether for living or investment, this is a rare opportunity in a strategic and desirable location.

    The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function (Repost)

    Posted By: nebulae
    The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function (Repost)

    Edmund T. Rolls and Gustavo Deco, "The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function"
    English | ISBN: 0199587868 | 2010 | 314 pages | PDF | 4 MB

    The activity of neurons in the brain is noisy in that their firing times are random when they are firing at a given mean rate. This introduces a random or stochastic property into brain processing which we show in this book is fundamental to understanding many aspects of brain function, including probabilistic decision making, perception, memory recall, short-term memory, attention, and even creativity. In The Noisy Brain we show that in many of these processes, the noise caused by the random neuronal firing times is useful. However, this stochastic dynamics can be unstable or overstable, and we show that the stability of attractor networks in the brain in the face of noise may help to understand some important dysfunctions that occur in schizophrenia, normal aging, and obsessive-compulsive disorder.

    The Noisy Brain provides a unifying computational approach to brain function that links synaptic and biophysical properties of neurons through the firing of single neurons to the properties of the noise in large connected networks of noisy neurons to the levels of functional neuroimaging and behaviour. The book describes integrate-and-fire neuronal attractor networks with noise, and complementary mean-field analyses using approaches from theoretical physics. The book shows how they can be used to understand neuronal, functional neuroimaging, and behavioural data on decision-making, perception, memory recall, short-term memory, attention, and brain dysfunctions that occur in schizophrenia, normal aging, and obsessive-compulsive disorder.

    The Noisy Brain will be valuable for those in the fields of neuroscience, psychology, cognitive neuroscience, and biology from advanced undergraduate level upwards. It will also be of interest to those interested in neuroeconomics, animal behaviour, zoology, psychiatry, medicine, physics, and philosophy. The book has been written with modular chapters and sections, making it possible to select particular Chapters for course work. Advanced material on the physics of stochastic dynamics in the brain is contained in the Appendix.