Microsoft Dp-203 Certified: Azure Data Engineer Associate
Published 12/2024
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 9.95 GB | Duration: 19h 49m
Published 12/2024
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 9.95 GB | Duration: 19h 49m
Preparing for Azure Data Engineer Certification: DP-203 Data Engineering on Microsoft Azure Exam
What you'll learn
This course is ideal for students aspiring to achieve the "Microsoft Certified: Azure Data Engineer Associate" Dp-203 certification.
It includes comprehensive content aligned to pass DP-203 exam.
Students will gain hands-on experience in implementing and managing data engineering workloads using Microsoft Azure.
The course covers key Azure services, including Azure Synapse Analytics, ADF, Azure Data Lake Storage Gen2, Azure Stream Analytics, and Azure Databricks.
Past Papers and Practice: Access to 500 exam questions to solidify knowledge and prepare for certification.
Requirements
Prerequisites:
Familiarity with any database system and basic proficiency in SQL is good to have.
A foundational knowledge of data formats is expected. e.g csv etc
Description
This course is ideal for students aspiring to achieve the "Microsoft Certified: Azure Data Engineer Associate" certification.It includes comprehensive content aligned with the DP-203 exam.The course objectives focus on the following areas:Design and implement data storage (15–20%)Develop data processing (40–45%)Secure, monitor, and optimize data storage and data processing (30–35%)This Course structure organizes the course into a logical progression while providing a clear breakdown of the covered topics. Here’s is the structured outline of the course sections:1. Introduction and SetupOverview of the course and initial setup.2. Design and Implement Data StorageAzure Data Lake: Understanding and implementing data storage with Azure Data Lake.Azure SQL Server: Designing storage solutions using Azure SQL Server.Cosmos DB: Exploring storage capabilities with Cosmos DB.Azure Synapse Analytics: Building and managing storage in Azure Synapse Analytics.3. Develop Data ProcessingAzure Synapse Spark Pool: Leveraging Spark pools in Azure Synapse for data processing.Azure Data Factory: Developing ETL pipelines and data flows in Azure Data Factory.Azure Databricks: Implementing data processing workflows with Azure Databricks.Azure Event Hubs: Streaming and processing real-time data using Azure Event Hubs.Azure Stream Analytics: Real-time data stream processing with SQL-based queries.4. Secure Your DataAzure Data Lake Security: Implementing security best practices for Azure Data Lake.Azure Synapse Analytics Security: Securing data in Azure Synapse Analytics.Azure Data Factory and Databricks Security: Ensuring secure data workflows in Azure Data Factory and Databricks.4. Monitor and OptimizeAzure Data Lake Storage: Monitoring and optimizing storage performance.Azure Data Factory: Ensuring efficient operations with monitoring tools.Azure Synapse Analytics: Performance tuning and monitoring analytics workloads.Azure Stream Analytics and Cosmos DB: Streamlining data streams and database operations.Data Governance with Microsoft Purview: Managing and governing data using Microsoft Purview.5. Exam PreparationPast Papers and Practice: Access to 500 exam questions to solidify knowledge and prepare for certification.
Overview
Section 1: Segment1-Introduction and Setup
Lecture 1 1.1.Overview-Cloud Computing
Lecture 2 1.2.Concepts-Introduction to Cloud Computing.mp4
Lecture 3 1.3.Overview-Microsoft Azure.mp4
Lecture 4 1.4.Overview-How we are going to approach the Exam.mp4
Lecture 5 1.5.HandsOn-Create Azure Account.mp4
Lecture 6 1.6.HandsOn-Azure Portal Overview.mp4
Lecture 7 1.7.Overview-IMPORTANT-How to Complete the Course
Lecture 8 Complete Course Files
Section 2: Segment2-Design and implement data storage-DataLake
Lecture 9 2.0.Overview-Data Engineering Basics Concepts
Lecture 10 2.1.Overview of Types of azure Storage Account
Lecture 11 2.2.HandsOn-Create Azure Storage Account
Lecture 12 2.3.Overview of DataLake Gen2 Storage Account
Lecture 13 2.4.HandsOn-Create DataLake Gen2 Storage Account
Lecture 14 2.5.Different Format Types + HandsOn Uploading Files to Azure Storage
Lecture 15 Congrats on Completing a Section
Section 3: Segment3-Design and implement data storage-Azure SQL Server
Lecture 16 3.1.1.Overview-Azure SQL Database
Lecture 17 3.1.2.Overview Azure SQL Pricing Tier and Configuration Types
Lecture 18 3.2.Overview SQL Server Creation on Azure
Lecture 19 3.3.HandsOn SQL Server Creation
Lecture 20 3.4.HandsOn-connecting with SQL Server Using SSMS
Lecture 21 3.5.Installing Azure Data Studio
Lecture 22 3.6.1.HandsON - T-SQL Select Statement Basics
Lecture 23 3.6.2.HandsOn T-SQL Multiple Conditioning using Where Clause
Lecture 24 3.6.3.HandsOn T-SQL Order By Clause
Lecture 25 3.6.4.HandsOn T-SQL Aggregate Functions
Lecture 26 3.6.5.HandsOn T-SQL Group By Clause
Lecture 27 3.6.6.HandsOn T-SQL Partition By Statement
Lecture 28 3.6.7.HandsOn T-SQL LEAD and LAG Statement
Lecture 29 3.6.8.HandsOn T-SQL Common Table Expression using WITH Clause
Lecture 30 3.6.9.HandsOn T-SQL CASE Statement
Lecture 31 Congrats on Completing a Section
Section 4: Segment4-Design and implement data storage-CosmosDB
Lecture 32 4.1.1.Overview-Cosmos DB
Lecture 33 4.1.2.Concepts-CosmosDB use Cases
Lecture 34 4.1.3.Concepts-CosmosDB as a Solution
Lecture 35 4.2.1.Overview-Cosmos DB Pricing
Lecture 36 4.2.2.Concepts-Cosmos DB Throughput Models
Lecture 37 4.3.1.Overview-Cosmos DB APIs
Lecture 38 4.3.2.Concepts-Data Modelling and their APIs
Lecture 39 4.3.3.Concepts-APIs Use-cases for Cosmos DB
Lecture 40 4.4.1.HnadsOn-Cosmos DB Account Creation
Lecture 41 4.5.1.Concepts-Databases, containers, and items in Cosmos DB
Lecture 42 4.5.2.HandsOn-Create Database inside Cosmos DB account
Lecture 43 4.5.3.HandsOn-Create a Container inside Cosmos DB
Lecture 44 4.5.4.HandsOn-Create Items inside Cosmos DB
Lecture 45 4.6.1.Concepts-Physical Partitions in Cosmos DB
Lecture 46 4.6.2.Concepts-Logical Partitions in Cosmos DB
Lecture 47 4.7.1.Concepts-Consistency Levels in Cosmos DB
Lecture 48 4.7.2.HandsOn-Set Consistency for Cosmos DB
Lecture 49 4.8.1.HandsOn-Scaling a Cosmos DB across the Globe
Lecture 50 Congrats on Completing a Section
Section 5: Segment5-Design and implement data storage-Azure Synapse Analytics
Lecture 51 5.1.Overview-Azure Synapse Analytics basic Concepts
Lecture 52 5.2.Overview-Azure Synapse Components
Lecture 53 5.3.Overview-Azure Synapse Compute Power
Lecture 54 5.5.Concept-SQL Database vs SQL Data Warehouse
Lecture 55 5.6.Overview-Serverless SQL Pools
Lecture 56 5.7.Overview-Synapse SQL Underlying Architecture
Lecture 57 5.9.HandsOn-Create Synapse Workspace
Lecture 58 5.10.1.HandsOn-Query Csv from Data Lake
Lecture 59 5.10.2.HandsOn-Setting Role Assignment inside Data lake for Reading Data
Lecture 60 5.11.Overview-Dadicated SQL Pool
Lecture 61 5.12.HandsOn-Creating and Pausing Dedicated SQL Pool
Lecture 62 5.13.0.Overview-Data Loading Methods
Lecture 63 5.13.1.HandsOn-External Table Serverless SQL CSV format-part1
Lecture 64 5.13.2.HandsOn- External Table Serverless SQL csv format-part2
Lecture 65 5.13.3.HandsOn- External Table Dedicated SQL csv format-part3
Lecture 66 5.13.4.HandsOn-External table parquet serverless&dedicated
Lecture 67 5.13.5.HandOn-Copying Data using Polybase
Lecture 68 5.13.6.HandsOn-Copying Data using Copy into Statement
Lecture 69 5.13.7.HandsOn-Copying Data with Auto Schema Detection using Copy into Statement
Lecture 70 5.13.8.HandsOn-Copying Data using Pipelines
Lecture 71 5.14.Concepts-Transverse Files and Folders for Hadoop and Native file system
Lecture 72 5.15.1.Overview-OLAP and OLTP systems
Lecture 73 5.15.2.Overview-Fact and Dimension Tables
Lecture 74 5.15.3.Overview-Star and Snow Flake Schema Design
Lecture 75 5.15.4.0.HandsOn-Transfer Data from SQL to Synapse SQL dedicated pool
Lecture 76 5.15.4.1.HandsOn-Transfer Data from SQL to Synapse SQL dedicated pool
Lecture 77 5.16.1.Concepts-Table or Data Distribution Methods
Lecture 78 5.16.2.Concepts-Distribution Selection
Lecture 79 5.16.3.Concepts-Hash and Replicated Distribution
Lecture 80 5.16.4.HandsOn-Creating Table Distribution in Dedicated SQL Pool
Lecture 81 5.16.5.HandsON-Query Performance and Monitor Tab inside Synapse
Lecture 82 5.16.6.Concepts-Slowly Changing Dimension Types
Lecture 83 5.16.7.0.HandsOn-Business Key for Creation for Dimension tables
Lecture 84 5.16.7.1.HandsON-Business Key for Creation for Dimension tables
Lecture 85 5.17.1.Overview-Use of Index on tables
Lecture 86 5.17.2.Concepts-Partition and Partition Switching
Lecture 87 5.18.0.HandsOn-Create a Restore Point and Restoring a Dedicated SQL pool
Lecture 88 5.19.0.Overview-Database Templates for Synapse Analytics
Lecture 89 Congrats on Completing a Section
Section 6: Segment6-Develop data processing-Azure Synapse Spark Pool
Lecture 90 6.1.0.Overview-History of Big Data Processing
Lecture 91 6.1.1.Overview-Benifits of Apache Spark
Lecture 92 6.1.2.Overview-Spark Underlying Architecture
Lecture 93 6.2.1.Concepts-Spark Pools inside Azure Synapse
Lecture 94 6.2.2.HandsOn-Creating Spark Pool in Synapse
Lecture 95 6.3.1.HandsOn-Creating Dataframe Using Pyhton
Lecture 96 6.3.2.HandsON-Read Data From Data Lake Using Python
Lecture 97 6.3.3.HandOn-Working with Loading function using pyspark
Lecture 98 6.3.4.HandsOn-Writing Data to Dedicated SQL Using Sparkpools
Lecture 99 Congrats on Completing a Section
Section 7: Segment7-Develop data processing-Azure Data Factory
Lecture 100 7.1.Overview-Azure Data Factory
Lecture 101 7.2.Overview-ETL Extract Transform and Load
Lecture 102 7.3.HandsOn-Create Azure Data Factory on Azure
Lecture 103 7.4.0.HnadsOn-Copy data activity from DataLake to Blob Storage
Lecture 104 7.4.1.HandsOn-Copy Data Activity for parquet to json conversion
Lecture 105 7.4.2.HandsOn-Create Pipeline csv to json
Lecture 106 7.5.0.Overview-Pipelines and Mapping Data Flows in ADF
Lecture 107 7.5.1.HandOn-Mapping Data Flow- SQL to Synapse SQL Fact Table
Lecture 108 7.5.2.HandOn-Mapping Data Flow- SQL to Synapse SQL Dimension Table
Lecture 109 7.5.3.HandOn-Mapping Data Flow- SQL to Synapse SQL Store Procedure Activity
Lecture 110 7.5.4.HandOn-Mapping Data Flow- SQL to Synapse SQL Derived Column Activity
Lecture 111 7.5.5.HandOn-Mapping Data Flow- SQL to Synapse SQL Business Key Activity
Lecture 112 7.5.6.Overview-Mapping Data Flow- Data Debug Feature
Lecture 113 7.5.7.Overview-Mapping Data Flow- Sink Types Available
Lecture 114 7.5.8.HandOn-Mapping Data Flow Json Data(Array and Object)
Lecture 115 7.6.0.Concepts-Integration Runtimes
Lecture 116 7.6.1.HandOn-Installing Self hosted IR
Lecture 117 7.6.2.HandOn-Self Hosted IR Copy Data from PC to DataLake
Lecture 118 7.7.0.Pipeline fail senerio
Lecture 119 7.8.0.Overview-Trigger Types in ADF
Lecture 120 7.9.0.Code Representation of ADF components inside GIT
Lecture 121 7.9.1.What is GIT How to version Control ADF
Lecture 122 7.9.2.HandsOn-Configuring GIT with ADF
Lecture 123 7.9.3.HandOn-How to merge changes in Business and create Pull request in ADF
Lecture 124 Congrats on Completing a Section
Section 8: Segment8-Develop data processing-Azure DataBricks
Lecture 125 8.1.0.Overview-Introduction to Databricks
Lecture 126 8.1.1.Overview-Benefits of DataBricks
Lecture 127 8.1.2.Concepts-Azure Databricks
Lecture 128 8.2.0.HandsOn-Create Databricks Workspace
Lecture 129 8.2.1.Concepts-Compute Cluster Types inside Azure Databricsk
Lecture 130 8.2.2.HandsOn-Create Compute inside DataBricks Workspace
Lecture 131 8.2.3.HandsOn-Read data inside DBFS
Lecture 132 8.2.4.HandsOn-Read Data from ADLS Account
Lecture 133 8.2.5.HandsOn-Visulizations inside Notebook in DataBricks
Lecture 134 8.3.0.HandsOn-Processing Json Data
Lecture 135 8.3.1.HandsOn-Saving to Databricks as Table
Lecture 136 8.3.2.HandsOn-Saving Table inside DataLake
Lecture 137 8.4.0.HandsOn-Reading Stream inside Databricks
Lecture 138 8.4.1.HnadsOn-Copying Stream inside Databricks Table
Lecture 139 8.5.0.HandsOn-Writing Data to Synapse SQL
Lecture 140 8.5.1.HandsOn-Reading data From Synapse Dedicated SQL pool
Lecture 141 8.6.0.HandsOn-History of Delta Tables
Lecture 142 8.7.0.HandsOn-Scheduling a Job
Lecture 143 8.8.0.HandsON-Creation of EventHub namespace resource
Lecture 144 8.8.1.HandsON-Creation of EventHub
Lecture 145 8.8.2.HandsON-Installing Required Libraries
Lecture 146 8.8.3.HandsON-Starting EventHub stream inside DataBricks
Lecture 147 8.8.4.HandsON-Transforming Event Stream inside DataBricks
Lecture 148 8.9.0.HandsON-Setup to Run Databricks Notebook from ADF
Lecture 149 8.9.1.HandsON-Running a Databricks notebook from ADF Pipeline
Lecture 150 8.10.HandsOn-Delete Unused Resources
Lecture 151 Congrats on Completing a Section
Section 9: Segment9-Develop data processing-Azure Event Hubs
Lecture 152 9.1.Processing Batch Data in Azure
Lecture 153 9.2.Processing Stream Data in Azure
Lecture 154 9.2.1.Overview-Azure Event Hubs
Lecture 155 9.2.2.Concepts-Partitions in Event Hubs
Lecture 156 9.3.1.HandsOn-Create EventHub NameSpace
Lecture 157 9.3.2.HandsOn-Create EventHub inside EventHub namespace
Lecture 158 9.3.3.HandsOn-Ingesting Data to EventHub
Lecture 159 9.3.4.HandsOn-Capture Data Feature in Event Hub
Section 10: Segment10-Develop data processing-Stream Analytics
Lecture 160 10.1.1.Overview-Azure Stream Analytics
Lecture 161 10.1.2.Overview-Stream Analytics Costing
Lecture 162 10.1.3.HandsOn-Create Stream Analytics Workspace
Lecture 163 10.2.1.HandsOn-Define Input in Stream Analytics
Lecture 164 10.2.2.1.HandsOn-Create Synapse SQL table
Lecture 165 10.2.2.2.HandsOn-Create a Table inside Synapse SQL
Lecture 166 10.2.2.3.HandsOn-Set the Staging location inside Stream Analytics
Lecture 167 10.2.2.4.HandsOn-Define an Output as Synapse SQL pool in Stream Analytics
Lecture 168 10.2.2.5.HandsOn-Create a Query and Start Streaming Job
Lecture 169 10.2.3.HandsOn-Fetch Data from ADSL to synapse SQL using Stream Analytics
Lecture 170 10.2.4.1.HandsOn-Sending Logs to EventHub
Lecture 171 10.2.4.2.HandsOn-Define an Input inside Stream Analytics
Lecture 172 10.2.4.3.HandsOn-Definie an output for Stream Analytics
Lecture 173 10.2.4.4.HandsOn-Formulate a Query based on your DataStructure
Lecture 174 10.2.5.HandsOn-Monitoring Errors for Stream Analytics
Lecture 175 10.2.6.1.Overview-Builtin Window functions in Stream Analytics
Lecture 176 10.2.6.2.Overview-Tumbling and Hopping Window in Stream Analytics
Lecture 177 10.2.6.3.Overview-Sliding,Session and Snapshot Window functions
Lecture 178 10.2.6.4.HandsOn-Setup for Tumbling Window in Stream Analytics
Lecture 179 10.2.7.HandsOn-Using Reference Data as Input in Stream Analytics
Lecture 180 Congrats on Completing Section 9 and 10
Section 11: Segment11-Secure-Azure Data Lake Security Aspects
Lecture 181 11.1.0.HandsOn-Installing Azure Data Explorer Client tool
Lecture 182 11.1.1.Overview-Security Aspects of Azure Data Lake Gen2
Lecture 183 11.1.2.HandsOn-Connecting Storage Account to Data Explorer using Account KEY
Lecture 184 11.1.3.HandsOn-Connecting Storage Account Through SAS token
Lecture 185 11.2.0.Overview-Authentication and Authorization Process
Lecture 186 11.2.1.Overview-Microsoft Entra ID
Lecture 187 11.2.2.HandsON-Create Microsoft Entra ID User
Lecture 188 11.3.1.Overview-RBAC Roles
Lecture 189 11.3.2.HandsOn-Assigning RBAC to a User
Lecture 190 11.3.3.HandsOn-Login Using New Entra ID USER and Assigning RBAC roles
Lecture 191 11.4.1.Overview-Access Control List (ACLs) Permission Types
Lecture 192 11.4.2.HandsOn-Implement ACLs inside Storage Accounts
Lecture 193 11.5.0.Concepts-Securing your Storage Using Service Endpoint
Lecture 194 11.5.1.HandsOn-Creating a Virtual Machine for Virtual Network
Lecture 195 11.5.2.HandsOn-Running a Virtual Machine for Service EndPoint
Lecture 196 11.5.3.HandsOn-Setup to Access Storage Using Service Endpoint
Section 12: Segment12-Azure Synapse Analytics Security Aspects
Lecture 197 12.1.0.Overview-Azure Synapse Security Encryption Types
Lecture 198 12.1.1.Overview-Transparent Data Encryption for Synapse Dedicated SQL Pools
Lecture 199 12.1.2.HandsOn-Creating a Key Vault
Lecture 200 12.1.3.HandsOn-Configuring a Key Vault and Creating a Key
Lecture 201 12.1.4.HandsOn-Enabling a Double Encryption for Synapse Workspace
Lecture 202 12.2.1.Overview-Microsoft Entra ID for Synapse Analytics
Lecture 203 12.2.2.HandsOn-Setting Entra ID user as Admin User for Synapse Analytics
Lecture 204 12.2.3.HandsOn-Given Microsoft Entra ID user permission dedicated Sql pool
Lecture 205 12.3.1.Overview-Managed Identities on Azure
Lecture 206 12.3.2.HandsOn-Creating External Table using Managed Identities Synapse
Lecture 207 12.3.3.HandsOn-Data Discovery and Classification Synapse SQL pool
Lecture 208 12.4.1.HandsOn-Column Level Security Synapse SQL
Lecture 209 12.4.2.HandsOn-Dynamic Data Masking inside Synapse SQL
Lecture 210 12.4.3.HandsOn-Row Level Security Synapse SQL
Section 13: Segment13-DataFactory and Databricks Security Aspects
Lecture 211 13.1.1.HandsOn-Encrypting Azure Data Factory
Lecture 212 13.2.1.Overview-Encryption using secrete scope in DataBricks
Lecture 213 13.2.2.HandsOn-App Registration inside Microsoft EntraID and Generating a Secret
Lecture 214 13.2.3.HandsOn-Save the secrete inside a Key Vault
Lecture 215 13.2.4.HandsOn-Accessing Vault Using Access Policies for Databricks
Lecture 216 13.2.5.HandsOn-Creating Secrete Scope inside Databricks
Lecture 217 13.2.6.HandsOn-Implementing Scoped Credentials inside Databricks Notebook
Lecture 218 13.2.7.HandsOn-Running a Code
Lecture 219 Congrats on Completing Security Sections
Section 14: Segment14-Monitor and Optimize-Data Lake Storage
Lecture 220 14.1.1.Concepts-Data Lake Storage Practices
Lecture 221 14.1.2.Concepts-Data Lake Access Tiers
Lecture 222 14.1.3.HandsOn-Selecting Default Tier for Blobs
Lecture 223 14.1.4.HandsOn-Changing Tier at file level for blobs
Lecture 224 14.1.5.HandsOn-Life Cycle Management Rules for blobs
Section 15: Segment15-Monitor and Optimize-Azure Data Factory
Lecture 225 15.1.1.Overview-Azure Data Factory IR and Debugging
Lecture 226 15.1.2.HandsOn-Anotations in ADF
Lecture 227 15.1.3.HandsOn-Monitor Service in Azure
Lecture 228 15.1.4.HandsOn-Creating Alert for Data Factory
Lecture 229 15.1.5.HandsOn-Monitor Data Factory Logs through Log Analytics Workspace
Section 16: Segment16-Monitor and Optimize-Synapse Analytics
Lecture 230 16.1.1.Overview-DMV Commands
Lecture 231 16.1.2.0.Overview-Work Load Management in Synapse
Lecture 232 16.1.2.1.HandsOn-WorkLoad Management in dedicated SQL pool
Lecture 233 16.1.3.0.Concepts-Result Set Caching in Synapse SQL
Lecture 234 16.1.3.1.HandsOn-Turning On Result Set Caching
Lecture 235 16.1.4.HandsOn-Checking Data Skewness
Lecture 236 16.1.5.HandsOn-Monitoring of Synapse Workspace
Lecture 237 16.1.6.HandsOn-Connecting Synapse with Log Analytics
Lecture 238 16.1.7.HandsOn-Deleting Diagnostic Settings
Section 17: Segment17-Monitor and Optimize-Stream Analytics, Cosmos DB
Lecture 239 17.1.1.Overview-Streaming Units and Monitoring for Stream Analytics
Lecture 240 17.1.2.Overview-Event Partitioning and Parallel Processing in Stream Analytics
Lecture 241 17.1.3.Concepts-time handling in Azure Stream Analytics
Lecture 242 17.1.4.HandsOn-Monitor Stream Analytics Job
Lecture 243 17.2.1.HandsOn-Monitor Cosmos DB through Matrices
Lecture 244 17.2.2.HandsOn-Setup Log Analytics with Cosmos DB
Section 18: Segment18-Monitor and Optimize-Data Governance with Microsoft Purview
Lecture 245 18.1.1.Concepts-Microsoft Purview Data Governance and Management
Lecture 246 18.1.2.HandsOn-Creating Microsoft Purview Account
Lecture 247 18.1.3.HandsOn-Scan Data Lake Assets with Purview
Lecture 248 18.1.4.HandsOn-Scanning Synapse SQL pool using Purview
Lecture 249 18.1.5.HandsOn-Browsing inside Microsoft Purview
Lecture 250 18.1.6.HandsOn-Connecting DataFactory with Purview
Lecture 251 18.1.7.HandsOn-Removing Assets
Lecture 252 Congrats on Completing Monitor and Optimize Sections
Section 19: Segment19-Practice Papers-500 Questions
Lecture 253 Overview-Exam on Microsoft for Dp-203
If you want to boost your career in the field of data engineering.,Professional who will like to transform yourself into a skilled data engineer, this course is for you.,Mastering DP-203 empowers you to build analytical solutions using Microsoft Azure's data platform technologies, paving the way for a successful career in data engineering.,This course is tailored for data professionals, and BI and Data Analytics specialists aiming to deepen their knowledge of data engineering.