Times Series Analysis for Everyone

Posted By: sammoh

Times Series Analysis for Everyone
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch | Duration: 6H 2M | Size: 10.90 GB

Times Series Analysis for Everyone LiveLessons covers the fundamental ideas and techniques for the analysis of time series data. This course introduces you to the basic concepts, ideas, and algorithms necessary to develop your own time series applications in a step-by-step and intuitive fashion. The lessons follow a gradual progression, from the more specific to the more abstract, taking you from the very basics to some of the most recent and sophisticated algorithms.

Overview

Times Series Analysis for Everyone LiveLessons covers the fundamental ideas and techniques for the analysis of time series data. This course introduces you to the basic concepts, ideas, and algorithms necessary to develop your own time series applications in a step-by-step and intuitive fashion. The lessons follow a gradual progression, from the more specific to the more abstract, taking you from the very basics to some of the most recent and sophisticated algorithms.

About the Instructor

Bruno Goncalves is a senior data scientist in the area of complex systems, human behavior, and finance. He has been programming in Python since 2005. For more than ten years, his work has focused on analyzing large-scale social media datasets for the temporal analysis of social behavior.

Skill Level
Intermediate
Learn How To
Use Pandas for time series
Create visualizations of time series
Transform time series data
Apply Fourier analysis
Utilize time series correlations
Understand random walk models
Explore and fit ARIMA models
Explore and fit ARCH models
Integrate machine learning into time series analysis
Integrate deep learning into time series analysis
Who Should Take This Course
Data scientists with an interest in time series data analysis
Course Requirements
Basic algebra, calculus, and statistics and programming experience
Lesson Descriptions

Lesson 1: Pandas for Time Series
Pandas was originally developed for financial applications. As such, it was developed with time series support from day one. In this lesson we review some of the fundamental features of pandas that we use in the remainder of the course.

Lesson 2: Visualizing Time Series Modeling
Visualization is a fundamental first step when exploring and understanding a new dataset. Here we visualize and highlight important features of the example time series we will analyze in detail.

Lesson 3: Stationarity and Trending Behavior
Time series can exhibit characteristic types of behavior, such as trends, seasonal, and cyclical patterns. In this lesson you learn how to identify each of these behaviors and to remove them from the time series in order to facilitate its analysis.

Lesson 4: Transforming Time Series Data
The modeling and analysis of time series often require us to transform the original data. In this lesson we learn how to calculate and apply the most common transformations, how to impute missing data, and how to estimate basic properties of the time series.

Lesson 5: Running Value Measures
Perhaps the simplest time series analysis you can perform is the exploration of how various metrics evolve as a function of time. In this lesson you learn how to calculate measures using running windows.

Lesson 6: Fourier Analysis
Fourier analysis is a powerful tool. In this lesson we explore how it enables us to not only observe the strongest frequencies present in the data, but also to eliminate noise patterns and perform simple extrapolations of future values.

Lesson 7: Time Series Correlations
An important step in characterizing a time series is understanding how it correlates with itself. The auto-correlation and partial-auto-correlation functions are the two most important functions we use to determine the temporal properties of our time series.

Lesson 8: Random Walks
A random walk—a sequence of positions where each step is chosen at random—is perhaps the simplest example of time series. Here we use it as a prototypical model to understand the fundamental ideas behind time series analysis and to determine whether or not a given series is stationary.

Lesson 9: ARIMA Models
The ARIMA class of models is the most popular and well-known family of time series models. It relies on the concepts of partial and full auto-correlation to define a simple random walk-like process that is able to reproduce most time series in a simple and efficient manner.

Lesson 10: ARCH Models
The ARIMA class of models requires the underlying time series to be stationary. When that assumption is not true, we need to rely instead on the ARCH class of models that generalizes ARIMA to the situation, common in financial time series, in which the variance of the time series changes over time.

Lesson 11: Machine Learning with Time Series
Both ARIMA and ARCH models are classical models that were developed specifically for the modeling of time series. However, it is possible to apply a wide range of machine learning approaches to the modeling and forecasting of time varying phenomena.

Lesson 12: Overview of Deep Learning Approaches
Recurrent neural networks are a class of deep learning architectures that were developed specifically to be used in modeling sequential patterns such as sequences of words, sounds, and other related phenomena. In this lesson you learn how you can apply them directly to time series.