Machine Learning Made Easy: Beginner To Expert Journey
Published 5/2025
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 2.75 GB | Duration: 9h 39m
Published 5/2025
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 2.75 GB | Duration: 9h 39m
Machine Learning, Python Basics, Data Analysis, Exploratory Data Analysis (EDA), Supervised Learning, Unsupervised Learn
What you'll learn
Understand core ML concepts and apply them using Python.
Master key ML algorithms using Python and essential libraries.
Master key ML libraries like NumPy, Pandas, Scikit-learn, and Matplotlib
Learn to preprocess and analyze data for effective model building.
Build practical ML models using real-world datasets.
Requirements
Foundational math skills – Understanding basic algebra
Basic computer literacy – Ability to navigate files, install software
A laptop – Required for coding, running ML models, and practicing hands-on exercises.
Internet connection – Needed for accessing course materials, datasets, and online resources.
Description
This course is designed for individuals with foundational math and computer skills, as well as those at an intermediate and advanced level who want to build a strong understanding of machine learning. You don’t need a high-end laptop—just a willingness to learn! The course includes a crash course on Python basics, covering essential libraries like NumPy, Pandas, Matplotlib, and Scikit-Learn. By the end, you’ll master data analysis, exploratory data analysis, supervised and unsupervised learning, and applying machine learning algorithms to real-world problems. It covers key algorithms such as linear regression, polynomial regression, logistic regression, K-Nearest Neighbors (KNN), K-Means clustering, DBScan, Support Vector Machines (SVM), and anomaly detection.Additionally, this course will help you develop strong problem-solving skills and understand how to interpret data effectively. You will gain hands-on experience through practical examples and real-world case studies, ensuring you can confidently apply machine learning techniques in various domains. Whether you're working on business applications, finance, healthcare, or AI-driven innovations, this course will equip you with the necessary skills to succeed. With step-by-step guidance and interactive exercises, you will build a strong foundation, allowing you to transition into advanced concepts effortlessly. By the end of this training, you'll be able to create, optimize, and evaluate machine learning models with confidence
Overview
Section 1: Introduction
Lecture 1 1_01_Introduction_to_ByteLumina
Lecture 2 1_02_How_to_access_resource
Section 2: 2_Crash_Course_on_Python_and_Google_Colab
Lecture 3 2_01_Introduction_to_Python
Lecture 4 2_02_Getting_Started_with_Google_Colab
Lecture 5 2_03_Basic_operations_in_Google_Colab
Lecture 6 2_04_Basics_of_Python_programming
Lecture 7 2_05_Double_and_single_quote_in_Python
Lecture 8 2_06_Basic_Data_types_and_variables
Lecture 9 2_07_Use_variables_with_F_String
Lecture 10 2_08_Comments_in_Python
Lecture 11 2_09_Lists_and_List_indexing
Lecture 12 2_10_Slicing_of_the_Lists
Lecture 13 2_11_Practicing_List_operations
Lecture 14 2_12_Basic_List_Operations_in_Python
Lecture 15 2_13_Tuple_in_Python
Lecture 16 2_14_Dictionary_in_Python
Lecture 17 2_15_Set_in_Python
Lecture 18 2_16_Immutable_and_Mutable_objects_in_Python
Lecture 19 2_17_Arithmetic_Operators_in_Python
Lecture 20 2_18_Comparison_operator_in_Python
Lecture 21 2_19_Logical_operators_in_Python_(and,_or,_not)
Lecture 22 2_20_Assignment_operators_in_Python
Lecture 23 2_21_Characters_and_strings_in_Python
Lecture 24 2_22_F-strings_in_Python
Lecture 25 2_23_Rules_for_variables_naming
Lecture 26 2_24_How_to_read_error_message
Lecture 27 2_25_Conditional_statements_in_Python
Lecture 28 2_26_Loops_in_Python
Lecture 29 2_27_Functions_in_Python
Lecture 30 2_28_Lambda,_map,_zip_functions_in_Python
Lecture 31 2_29_Methods_in_Python
Lecture 32 2_30_Python_Modules,_built-in_package
Lecture 33 2_31_OS_module_and_file_path
Lecture 34 2_32_File_handling_in_Python
Lecture 35 2_33_Json_format_and_Json_files_management_in_Python
Lecture 36 2_34_CSV_Format_and_CSV_file__handling_in_Python
Lecture 37 2_35_Special_characters_in_Python
Lecture 38 2_36_Exception_management_in_Python
Lecture 39 2_37_Objects_in_Python
Lecture 40 2_38_Python_classes_a_simple_introduction
Lecture 41 2_39_Benefits_of_Using_self_in_Python_Classes
Lecture 42 2_40_Constructors_in_Classes
Lecture 43 2_41_Object-Oriented_Programming
Lecture 44 2_42_PIP_in_Python
Lecture 45 2_43_Using_CoPilot_as_companion_to_write_and_troubleshoot_code
Lecture 46 2_44_End_of_section_Introduction_to_Python_and_Google_Colab
Section 3: 3_Numpy_in_Python
Lecture 47 3_01_Introduction_to_NumPy
Lecture 48 3_02_Import_Numpy_as_np
Lecture 49 3_03_Basic_Array_Creation_in_numpy
Lecture 50 3_04_Array_dimensions,_Shape_and_Size_in_Numpy
Lecture 51 3_05_Data_Types_in_Numpy
Lecture 52 3_06_Pseudo_Data_Generation_in_numpy
Lecture 53 3_07_Explanation_of_examples_created_in_previous_video1
Lecture 54 3_08_Explanation_of_examples_created_in_previous_video2
Lecture 55 3_09_Array_Indexing_and_Slicing
Lecture 56 3_10_Array_Shape_and_Reshape
Lecture 57 3_11_Special_dimension_in_Numpy
Lecture 58 3_12_Handling_Missing_Data_in_Numpy
Lecture 59 3_13_Numpy_performance_comparison
Lecture 60 3_14_Universal_Functions_in_Numpy
Lecture 61 3_15_Where_in_Numpy
Lecture 62 NumPy Cheat Sheet
Lecture 63 Rule of thumb for indexing
Lecture 64 Universal Functions in NumPy
Section 4: 4_Pandas_in_Python
Lecture 65 4_01_Introduction_to_Pandas
Lecture 66 4_02_Accessing_Data,_indexing_and_slicing_in_a_Series
Lecture 67 4_03_Accessing_data_by_Col_label_or_position_in_DataFrame.txt
Lecture 68 4_04_Selecting_data_by_label_in_DataFrame
Lecture 69 4_05_Setting_and_resetting_indexes
Lecture 70 4_06_Boolean_indexing
Lecture 71 4_07_Data_Types_in_Pandas
Lecture 72 4_08_Arithmetic_Operations
Lecture 73 4_09_Reindexing_and_Reshaping
Lecture 74 4_10_Statistics_in_Pandas
Lecture 75 4_11_CSV_and_JSON_file_saving_and_loading
Lecture 76 4_12_Working_with_Dates_and_Times
Lecture 77 4_13_Dates_and_Times_Arithmetic_operations
Lecture 78 4_14_Date_and_Time_Indexing
Lecture 79 4_15_Merging_a_DataFrames
Lecture 80 4_16_Joining_DataFrames
Lecture 81 4_17_Concatenation,_stacking_and_unstacking_a_dataframe
Lecture 82 4_18_Grouping_in_Pandas
Lecture 83 4_19_MultiIndexing
Lecture 84 4_20_Pivot_Tables
Lecture 85 4_21_Groupby_vs_Multiindex_vs_Pivot_Table
Lecture 86 4_22_Mastering_Pandas_str_A_powerful_tool_for_string_operations
Lecture 87 4_23_Regex_in_Pandas
Lecture 88 4_24_Data_Categorization_with_pandas_cut
Lecture 89 4_25_Alternatives_to_Pandas_Vectorized_Operations
Lecture 90 4_26_Panda_iteration
Lecture 91 4_27_Window_Functions_in_Pandas
Lecture 92 4_28_Missing_Data_Handling
Lecture 93 4_29_Where_and_Mask_in_pandas
Lecture 94 4_30_Concluding_the_section
Lecture 95 Pandas Cheat Sheet
Lecture 96 Arithmetic Methods in Pandas
Lecture 97 Comparison Operators
Lecture 98 dt accessor in pandas
Lecture 99 Str accessor in Pandas
Lecture 100 regular expressions
Section 5: 5_Managing_Google_Drive
Lecture 101 5_01_Issues_with_Colab
Lecture 102 5_02_Mounting_google_drive
Lecture 103 5_03_Managing_sessions_in_Google_Colab
Section 6: 6_Matplotlib_and_Seaborn_in_Python
Lecture 104 6_01_Plotting_and_Visualization_in_Python
Lecture 105 6_02_Line_Plot
Lecture 106 6_03_Bar,_Scatter,_area_and_pie_plots
Lecture 107 6_04_Histogram,_box,_Kernel_density_Estimate_plot
Lecture 108 6_05_Figure,_subplot_and_subplots
Lecture 109 6_06_Colors,_Markers,_and_Line_Styles_in_Matplotlib
Lecture 110 6_07_Tick,_labels_and_legends
Lecture 111 6_08_Annotation_and_drawings_on_Subplot
Lecture 112 6_09_Saving_plots_to_file
Lecture 113 6_10_Introduction_to_Seaborn
Lecture 114 Matplotlib cheat sheet
Lecture 115 Seaborn Cheat Sheet
Section 7: 7_Exploratory_Data_Analysis_(EDA)
Lecture 116 7_01_EDA_and_Kaggle
Lecture 117 7_02_Getting_First_Dataset
Lecture 118 7_03_Loading_data_in_Colab_and_Sales_Price_Analysis
Lecture 119 7_04_Normal_distribution,_Data_Skewness_and_kurtosis
Lecture 120 7_05_Data_outliers
Lecture 121 7_06_Features_of_a_dataset
Lecture 122 7_07_Helper_function_explained1
Lecture 123 7_08_Helper_function_explained2
Lecture 124 7_09_Preparation_to_analyze_Features
Lecture 125 7_10_Features_analysis_1
Lecture 126 7_11_Features_analysis_Null_value_management
Lecture 127 7_12_Features_correlation
Lecture 128 7_13_Numeric_features_Missing_value_handling
Lecture 129 7_14_The_Limitations_of_EDA_When_Intuition_and_Data_Disagree
Lecture 130 7_15_Analyzing_Datetime_features
Lecture 131 7_16_Ordinal_features_analysis
Lecture 132 7_17_Anova_(Analysis_of_Variance)_for_Nominal_Features
Lecture 133 7_18_Nominal_Features_analysis
Lecture 134 7_19_Data_Analysis_Final_words
Section 8: 8_Introduction_to_Machine_Learning
Lecture 135 8_01_What_is_Machine_learning
Lecture 136 8_2_Types_of_Machine_Learning_Supervised_Unsupervised_and_Reinforcement_Learning
Lecture 137 8_03_Applications_of_Machine_learning
Lecture 138 8_04_Linear_Regression_Introduction
Lecture 139 8_05_Understanding_Scalars,_Vectors,_Matrices,_and_Tensors
Lecture 140 8_06_Linear_regression_in_Machine_Learning
Lecture 141 8_07_Introduction_to_cost_function_Mean_Squared_Error_(MSE)
Lecture 142 8_08_Key_Parameters_or_coefficient_Slope_w_and_y-intercept_b
Lecture 143 8_09_Introduction_to_Gradient_descent_algorithm
Lecture 144 8_10_What_is_Gradient_Descent
Lecture 145 8_11_Learning_rate
Lecture 146 8_12_Feature_Scaling
Lecture 147 8_13_Data_set_split_between_train,_test_and_validation_data
Lecture 148 8_14_Multi_variable_regression
Lecture 149 8_15_Dot_product
Lecture 150 8_16_Explanation_of_dot_product_functions
Lecture 151 8_17_House_price_prediction_with_full_application
Lecture 152 8_18_Exploring_Feature_Scaling_Methods
Lecture 153 8_19_Polynomial_regression_and_Feature_Engineering
Lecture 154 8_20_Vectorization_of_Equations
Lecture 155 8_21_Saving_numeric_features
Section 9: 9_Intro_to_sklearn_Scikit-Learn
Lecture 156 9_01_Introduction_to_Scikit-learn
Lecture 157 9_02_Dataset_split_in_train_and_test
Lecture 158 9_03_Data_scaling_with_sklearn
Lecture 159 9_04_Arrays_comparison
Lecture 160 9_05_Regression_analysis_for_single_variable
Lecture 161 9_06_Shape_of_the_vector
Lecture 162 9_07_Multivariable_linear_regression
Lecture 163 9_08_Result_analysis
Section 10: 10_Logistic_regression_and_classification
Lecture 164 10_01_Introduction_to_classification
Lecture 165 10_02_Logistic_regression
Lecture 166 10_03_Decision_boundary
Lecture 167 10_04_Loss_function_for_logistic_regression
Lecture 168 10_05_Cost_function_and_Gradient_Descent_for_logistic_regression
Lecture 169 10_06_Titanic_Survival_Insights_Data_download
Lecture 170 10_07_One_Hot_Encoding
Lecture 171 10_08_Data_preparation_for_model
Lecture 172 10_09_Model1_for_binary_classification
Lecture 173 10_10_Accuracy_and_Cost_for_classification
Lecture 174 10_11_Simplifying_Logistic_Regression_with_Scikit-Learn
Section 11: 11_Model_performance_validation
Lecture 175 11_01_Train,_Test_and_Validation_split
Lecture 176 11_02_K-fold_cross_validation
Section 12: 12_Confusion_Matrix
Lecture 177 12_01_Unbalanced_data_problem
Lecture 178 12_02_Confusion_matrix
Lecture 179 12_03_Precision,_Recall_and_F1-Score
Lecture 180 12_04_Classification_report
Section 13: 13_K-Nearest_Neighbors_(KNN)
Lecture 181 13_01_Introduction_to_K-Nearest_Neighbors
Lecture 182 13_02_Euclidean_Distance_formula
Lecture 183 13_03_KNN_algorithm
Section 14: 14_Model_Overfitting_and_Underfitting_problem
Lecture 184 14_01_Overfitting_and_underfitting
Lecture 185 14_02_Addressing_over_or_under_fitting
Lecture 186 14_03_Reguralization
Section 15: 15_SVM_Support_Vector_Machine
Lecture 187 15_01_Introduction_to_Support_vector_machine
Lecture 188 15_02_Key_terms_for_SVM
Lecture 189 15_03_Support_vector_classification_(SVC)
Lecture 190 15_04_Randomized_Search
Lecture 191 15_05_Grid_search
Lecture 192 15_06_Support_vector_regression_(SVR)
Section 16: 16_Decision_Tree_Random_Forest_and_XGBoost
Lecture 193 16_01_Introduction_to_decision_trees
Lecture 194 16_02_Entropy
Lecture 195 16_03_Information_gain
Lecture 196 16_04_Gini_Index
Lecture 197 16_05_Decision_tree_classifier
Lecture 198 16_06_Decision_Tree_Regression
Lecture 199 16_07_Ensemble_multiple_decision_trees
Lecture 200 16_08_Bootstrapping_sampling_with_replacement
Lecture 201 16_09_Random_forest
Lecture 202 16_10_XGBoost
Lecture 203 16_11_Coefficient_of_determination
Lecture 204 16_12_Models_performance_comparison
Section 17: 17_K_mean_clustering_Unsupervised_Learning
Lecture 205 17_01_Introduction_to_clustering
Lecture 206 17_02_K-Mean_Clustering_algorithm
Lecture 207 17_03_K-Mean_Clustering_algorithm_formula
Lecture 208 17_04_Data_Preparation_for_clustering
Lecture 209 17_05_K_mean_clustering_with_sklearn
Section 18: 18_DBScan
Lecture 210 18_01_Introduction_to_DBScan
Lecture 211 18_02_Application_of_DBScan
Section 19: 19_Anomaly_detection_Finding_unusual_events
Lecture 212 19_01_Introduction_to_anomaly_detection
Lecture 213 19_02_Gaussian_normal_distribution_for_anomaly_detection
Lecture 214 19_03_The_dataset_for_anomaly_detection
Lecture 215 19_04_Anomaly_detection_algorithm
Section 20: 20_Final_words
Lecture 216 20_01_Next_steps
Anyone eager to learn machine learning with foundational math and IT skills.,Business executives seeking insights into AI and data-driven decision-making,Beginner developers looking to build a strong foundation in machine learning.,Machine learning enthusiasts eager to explore practical applications.,Technical professionals wanting to enhance their analytical skills.,Project managers aiming to understand ML-driven solutions.,Product managers interested in leveraging ML for business strategy.,Students preparing for careers in data science, AI, or related fields.