Applied Supervised Learning with R [Repost]

Posted By: readerXXI

Applied Supervised Learning with R : Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends
by Karthik Ramasubramanian, Jojo Moolayil
English | 2019 | ISBN: 1838556338 | 503 Pages | PDF/ePub/Mobi | 60 MB

R provides excellent visualization features that are essential for exploring data before using it in automated learning.

Applied Supervised Learning with R helps you cover the complete process of employing R to develop applications using supervised machine learning algorithms for your business needs. The book starts by helping you develop your analytical thinking to create a problem statement using business inputs and domain research. You will then learn different evaluation metrics that compare various algorithms, and later progress to using these metrics to select the best algorithm for your problem. After finalizing the algorithm you want to use, you will study the hyperparameter optimization technique to fine-tune your set of optimal parameters. To prevent you from overfitting your model, a dedicated section will even demonstrate how you can add various regularization terms.

By the end of this book, you will have the advanced skills you need for modeling a supervised machine learning algorithm that precisely fulfills your business needs.

What you will learn

Develop analytical thinking to precisely identify a business problem
Wrangle data with dplyr, tidyr, and reshape2
Visualize data with ggplot2
Validate your supervised machine learning model using k-fold
Optimize hyperparameters with grid and random search, and Bayesian optimization
Deploy your model on Amazon Web Services (AWS) Lambda with plumber
Improve your model's performance with feature selection and dimensionality reduction

This book is specially designed for novice and intermediate-level data analysts, data scientists, and data engineers who want to explore different methods of supervised machine learning and its various use cases. Some background in statistics, probability, calculus, linear algebra, and programming will help you thoroughly understand and follow the content of this book.


If you want to support my blog, then you can buy a premium account through any of my files (i.e. on the download page of my book). In this case, I get a percent of sale and can continue to delight you with new books!