Tags
Language
Tags
August 2025
Su Mo Tu We Th Fr Sa
27 28 29 30 31 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Machine Learning (ML) Methods In Petroleum Industry Seminar

    Posted By: lucky_aut
    Machine Learning (ML) Methods In Petroleum Industry Seminar

    Machine Learning (ML) Methods In Petroleum Industry Seminar
    Published 3/2025
    MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
    Language: English | Size: 358.66 MB | Duration: 1h 14m

    This AL/ML Focused Seminar Presented by Sr. Petroleum Engineering Data Consultant

    What you'll learn
    Machine Learning Overview
    Descriptive Statistics
    Regression
    Classification
    Clustering
    Time Series forecasting

    Requirements
    Interest in Oil and Gas Drilling Engineering
    Passion to Learn Artificial intelligence (AI) and machine learning (ML)

    Description
    This seminar, presented by Sr. Petroleum Engineering Data Consultant, which covers a broad overview of machine learning concepts and their application within the oil and gas sector. It starts with the definition of machine learning (ML), emphasizing its ability to learn from data without explicit programming. The presentation highlights the wide range of ML applications, from image and speech recognition to fraud detection and financial forecasting, with following agenda: Introduction to Machine LearningDescriptive StatisticsRegressionClassificationClusteringTime Series forecastingThe core of the presentation focuses on key ML techniques: supervised learning, unsupervised learning, and reinforcement learning. Supervised learning is detailed with methods like linear regression, logistic regression, support vector machines (SVM), decision trees, and ensemble techniques. Unsupervised learning is highlighted with K-Means clustering, hierarchical clustering, and dimensionality reduction. Feature engineering and selection are discussed as critical steps in the ML workflow, involving the creation of new features from existing data and the identification of the most relevant features for model building.Descriptive statistics are presented as essential for understanding data, using P-values and correlation coefficients to determine significance and relationships between variables. The presentation outlines data types as qualitative (attributes) and quantitative (categorical). A significant portion is dedicated to regression analysis, including linear, multiple linear, and non-linear regression models. Specific applications in the petroleum industry are highlighted, which are including seismic interpretation, reservoir characterization, PVT modelling, etc.Finally, the presentation covers time series forecasting using statistical, machine learning, and deep learning methods. Statistical methods such as Moving Average are talked about with more advanced Machine Learning Methods such as Random Forest, ending with Deep Learning techniques like Recurrent Neural Networks.

    Geologist, Petroleum Engineers, Oil and Gas Employees,Petrophysicist, Geoscientist, Cased Hole Logs Analysts and Interpreters,Geology and Petroleum Engineering College and University Students,Python ,Artificial intelligence (AI) and Machine learning (ML) Enthusiast,Workover and Drilling Professionals